
Technical Report MSR-TR-2005-179, December, 2005

1

BitVault: a Highly Reliable Distributed Data Retention Platform
Zheng Zhang, Qiao Lian, Shiding Lin, Wei Chen, Yu Chen, Chao Jin

Microsoft Research Asia
{zzhang, i-qiaol, t-slin, weic, ychen, t-chjin}@microsoft.com

Abstract
In this paper, we report the design and implementation of the storage layer of BitVault: a content-addressable retention platform
for large volume of reference data – seldom-changing information that needs to be retained for a long period of time. BitVault
uses “smart brick” as the building block to lower the hardware cost. However, the challenges are to maintain low management
cost in a system that needs to scale all the way from one brick to tens of thousands of bricks, to ensure reliability and to deliver
with a simple enough design. Our design incorporates P2P technologies for its self-managing and self-healing capabilities and
uses massively parallel repair to reduce vulnerability window of data loss. The simplicity of the architecture relies on an eventu-
ally reliable membership service provided by a perfect one-hop DHT (distributed hash table), and its object-driven repair model
yields last-copy recall guarantee: independent of how many other failures that may occur and their sequences, as long as the
last copy of a data object still remains in the system, the data can be retrieved and its replication degree fully restored. A proto-
type has been implemented. Theoretical analysis, simulations and experiments are conducted to validate the design of BitVault.

1. Introduction

Companies today face the problem of managing an in-
creasing amount of reference data — seldom-changing
information that needs to be retained for its business
value or for compliance reasons. The Enterprise Storage
Group estimates that[1], by 2005, more than half of the
data stored by North American businesses will be refer-
ence data (examples include check images, electronic
invoices, email messages, etc.). Furthermore, the
amount of reference data is growing one and a half
times as fast as the non-reference one. The force behind
these trends is the digitization of all kinds of data. For
example, X-ray images alone produce over 20PB of
data every year. Digitizing all phone conferences of a
year would have generated 17,000PB worth of data.
Also, in the enterprise world, email archiving is of
paramount importance due to legal regulations.

Reference data must be kept for an infinite period of
time. On the other hand, data must be easily accessible:
the SEC-17(a) regulation states that companies must
retrieve the required documents in 48hours when a
court order is delivered, or face strict penalty. In addi-
tion to ease of access, the raw performance of accessing
the data should be reasonable, such that search func-
tionality can be built on top of the platform. This is es-
pecially important for email archiving applications.

BitVault is a backend storage platform for reference
data. Our top-three design goals are 1) low total cost of
ownership (TCO), 2) extremely high reliability and
availability and 3) simplicity. To achieve these goals,
our design combines the latest peer-to-peer technologies
and a number of novel techniques. In particular, our
main contributions include the followings:

• We employ a weak and eventual membership pro-
tocol to organize commodity “smart bricks” into a
very large logical space offering a DHT (distrib-
uted hash table) abstraction. In contrast to other

systems that are either client/server architected or
using strong membership protocol, BitVault scales
out in a self-organizing manner with low overhead.

• We employ the object-driven repair model that
gives objects the central role of the repair process.
This model affords the use of soft-state indices and
yet delivers the last-copy recall guarantee: as long
as an object still has the very last replica, its repli-
cation degree is fully restored and the object is ac-
cessible as soon as possible. Furthermore this guar-
antee can withstand arbitrary number of failures
and their sequences. Our basic idea is to leverage
the service of the membership protocol to rebuild
any missing indices if necessary, and the indices in
turn repairs missing replicas. This object-centric
strategy is very different from the conventional way
of dealing with failures, one in which the index is
first made to be reliable and consistent, and then
functions as the base to react to failures.

• BitVault uses massively parallel repair to signifi-
cantly bring down the repair window (e.g. minutes
instead of hours). Previously, this is achieved only
in a centralized-indexed solution like GFS [14].

The simplicity of the BitVault architecture is due to a
number of things. The repair model depends on the
eventual convergence of live brick membership list, and
hence there is no need for a strong consensus protocol
at run time. BitVault deals with immutable objects only,
and allows extra copies to temporarily exist. Conse-
quently, BitVault does not employ distributed transac-
tions. A prototype of BitVault has been implemented
and evaluated in our lab, and the experimental results
validate our design choices.

The remaining sections are organized as follows. In
Section 2 we elaborate our design goals. Section 3 de-
scribes the architecture and the protocols. In Section 4
we describe our implementation. To give an intuition on

Technical Report MSR-TR-2005-179, December, 2005

2

how applications may use BitVault, several applications
were described in Section 5. In Section 6 we provide
experimental results. We discuss the related work in
Section 7 and conclude the paper with Section 8.

2. Requirements and design goals

We begin by summarizing the key requirements of a
data retention platform of reference data mentioned
earlier: 1) very large and rapidly growing volume (hun-
dreds of billions) of small and medium-sized objects
(from a few KB of email messages to a few GB of video
streams); 2) very high reliability and availability, with
good access performance in general.

Accordingly, the design and implementation of BitVault
have three top-level objectives, as we elaborate below.

Goal#1: low TCO (total cost of ownership). We break-
down TCO into three major components: hardware cost,
operational cost and power consumption.

In order to keep the total cost low, a system of such a
large scale must ride the economies of large scale. Data
retention has been, and still is, dominated by tape librar-
ies, which are expensive to operate, slow to access and
are ill suited when we start to look into the possibility of
digitizing all kinds of data. In contrast, the price per GB
of disk is declining to twice of that of tape and it is
therefore justified to backup to disks, instead of tapes.
For this reason, we use “smart bricks” as our building
bricks. Smart bricks are essentially trimmed down PC
with large disk(s). We believe that the trend is such that
smart bricks will be commodity components, just as
PCs are today. This design decision also allows us to
have a good access performance, in case search func-
tionality needs to be built on top of the platform. This is
especially important for email archiving applications.

Given the longevity of data kept in the system as well as
the volume of growth, however, smart bricks of differ-
ent capability will be procured at different points of
time and co-exist in the system. Thus, BitVault must
leverage the inherent heterogeneity and support online
migration to new hardware.

In terms of total cost of ownership (TCO), however, the
hardware cost is only a small fraction. The management
overhead of dealing with the complexity of the system
rises quickly with the system scale. To give a total 5PB
of raw capacity and with the disk capacity of 500GB,
BitVault needs to scale out gracefully upwards to 10K
bricks. Of course, we do not believe that initially there
will be many instances with such a scale, and thus in-
cremental scale-out capability is important. Therefore,
BitVault must be as self-managing and self-organizing
as possible: its administration overhead must be low and
almost constant, independent of the system scale. Ide-

ally, all that the administrator needs to do is to unpack a
brick, install the BitVault software, plug into the system
and then forget about it. When a brick fails, it is simply
unplugged from the system. All these must be done
online, with minimum perturbation to ongoing opera-
tions, with no compromise to reliability and availability.

A very large BitVault installment can consume substan-
tial power, and this is where the traditional “cold” me-
dia such as tape and CD hold advantages: they cost zero
energy. We do not address this issue yet, but believe
there are amply opportunities to strike the balance be-
tween power consumption and accessibility.

Goal#2: extremely high reliability and availability.
One of the most important design goals of BitVault is
rapid repair. In a system of 10K bricks, failure will be
frequent, as is observed by works in the context of large
scale (e.g. GFS [14]). Some of these failures are tran-
sient and only affect availability temporarily, and some
others are fatal and impact reliability. In the design of
BitVault, we use the term last-copy fast recall to char-
acterize a storage system’s capability to deal with fail-
ures: as long as an object still has the very last replica,
its replication degree should be fully restored and the
object is accessible as quickly as possible. Therefore,
rapid repair is essential. BitVault’s strategy is to lever-
age the scale of the system and spread the repair load so
as to utilize all the aggregated network bandwidth, with
a target repair window of minutes instead of hours.

A great subset of the data stored in BitVault may need
to tolerate site disasters. Since the WAN bandwidth is
limited, it is desirable that we can accommodate “repli-
cation by mail”[16]. BitVault introduces the concept of
self-identifying bricks: a brick primed with objects ob-
tained elsewhere can be FedEx-ed to a different site,
plugged in and let its content properly replicated and
readily and accessible.

Goal#3: simplicity. A complex system of such a scale is
difficult to get right, and the first two objectives are
already ambitious. Thus, the unspoken rule of BitVault
is to strike at simplicity as much as possible, so that the
system behavior is provable and correct. Many of our
decisions, such as soft-state index (3.3.1), object-driven
repair model (3.3.2) and the avoidance of global and
transaction protocols are founded upon this principle.

System model: BitVault operates in a controlled envi-
ronment and all hardware is assumed to be trusted.
Bricks are connected with high-throughput and low-
latency LAN, and we assume Gigabit Ethernet as the
switching fabric, though our prototype uses 100Mb
switches. Transient failures include instances such as
brick reboot; cable disconnection, switch failures etc.;
they can affect multiple bricks and become sources of

Technical Report MSR-TR-2005-179, December, 2005

3

correlated but transient failures. For the time being, we
do not consider network partitions. All other failures
such as disk crashes are permanent and fail-stop.

3. Design

Interface: BitVault stores immutable objects, with
checkin and checkout as the two primary APIs. A 160bit
key is the handle to retrieve an object. Each object has a
unique key and the key distribution is uniform. If the
key is derived from hash of the object, as is done in our
prototype, then BitVault becomes content-addressable.

Given that BitVault’s main objectives are self-managing,
strong scale-out capability and very high reliability, our
design combines the latest peer-to-peer technologies
and a number of novel techniques. Specifically, we
adopt the DHT logical space as the primary abstract for
self-organizing and scale-out capability. While index
partition is DHT-based, replica placement is policy con-
trolled, allowing massively parallel repair for a failed
brick. To avoid complexity, we use object-driven repair
model, which leads to soft-state indices that are far sim-
pler to implement, and yet guarantee last-copy recall.

We will start with the high-level system architecture and
discuss other design alternatives that we have consid-
ered. We will then describe per-brick architecture, fol-
lowed by individual protocols. Some of the components
can have alternative implementations and thus their
details are left in the next section.

3.1 High-level system architecture

When we talk about a scalable architecture, the classic
client-server architecture often falls out of favor. Yet,
works such as GFS [14] have demonstrated that this
structure often works and works well. In this architec-
ture (Figure 1(a)), a set of masters manages the bricks
storing individual replicas. The masters keep the integ-
rity of the indices, and typically run a replicated state
machine (or just hot-standby) to ensure that they act as
one entity and endure failures.

However, the architecture is ill-suited for a data reten-
tion platform. First of all, unlike GFS in which object
size is 64MB, reference data is small. As such, the size
of the index will be huge and difficult to fit in the mem-
ory of the master (as is done in GFS). This raises both
performance and scalability concerns. Secondly, assum-
ing a total of N bricks in the system, the O(N) periodical
beaconing from the master(s) to the bricks can consume
substantial resources. If the beacon interval is 10s, then
for a 10K brick installment, a master needs to process
1K beaconing every second. None of the above is a real
concern if the master does not impose heavily on the
access path. GFS is a file system, and can leverage cli-

ent-side leasing so that client requests can go directly to
the bricks most of the time, bypassing the master when
lease is valid. Unfortunately, for a data retention plat-
form, it is unlikely that access locality exists, if at all.
Hence, the master is likely to become a performance
bottleneck, especially when we talk about a 10K scale.

...

Index Shadow copy(a) Client / Server000…~K1 K1+1~K2Zone K2+1~K3 KN-1+1~~111...
...

B1 B2 B3 BNPrimary data and replica of B1(b) DHT000…~K1 K1+1~K2Zone K2+1~K3 KN-1+1~~111...
...(c) Combination of Client / Server and DHT

Replica pointer / Failure detection Failure detectionReplica pointer Index replication
000…~K1 K1+1~K2Zone K2+1~K3 KN-1+1~~111...

...(d) BitVaultMRL membership notification

Figure 1. Different architectures for a scalable brick-
based system: (a) client-server; (b) DHT, (c) DHT + client-

server and (d) DHT-based index partition, policy con-
trolled object placement with a membership service.

The next choice is to base the architecture over DHT
(distributed hash table [27][29][31][37]). After all,
many wide-area archival systems – even file system,
have been proposed (e.g. Ivy[24], CFS[10], PAST[30]
and Pastiche [9]). If these systems can handle high
churn rate and run in untrusted environment with low
resource consumption (often O(logN)), they would ap-
pear to operate well in a controlled and less dynamic
context that BitVault targets. In fact, an earlier version
of BitVault, called RepStore [35] was designed with
this architecture.

Technical Report MSR-TR-2005-179, December, 2005

4

In DHT, nodes join a large logical space (e.g. 160 bits)
with random IDs, and thus partition the space in a self-
organizing way. The portion of the space a node is re-
sponsible for is called its zone. For instance, x’s zone is
(y.id, x.id] (e.g. Chord [31]), where y is x’s immediate
predecessor in the logical space. A node whose zone
covers an object’s key (typically the hash of the object)
is called the root of the object. Typically, all current
schemes enforce an invariance such that a number of
replicas of the object is placed on a set of logically con-
secutive nodes, starting from the root brick (Figure 1
(b)). As it is, DHT-based system has no need for global
metadata at all, and presents to the upper-layer applica-
tion with a reliable object store interface. On average,
starting from any arbitrary node, lookup an object using
its key to invoke checkin/checkout operations at the
root node takes O(logN) network hops.

In the context of BitVault, we found that the most useful
concept of these proposals is the self-organizing logical
space. However, there are a few serious problems:

• First of all, uniform node ID yields an exponential
zone distribution. Since object keys are uniform
(especially when they are hashes of objects), stor-
age utilization across nodes is uneven. This be-
comes a major problem when raw brick capacities
differ, as will be the case in any real BitVault de-
ployment. Giving up the control of object place-
ment is even more problematic when applications
demand that certain objects to co-locate.

• Second, during data repair, each of the k consecu-
tive bricks after the failed brick needs to share one-
kth of the load of the failed brick, where k is the
replication degree. That means each node has to
keep about one-kth of free space for data repair, so
disk utilization is less than optimal in DHT-based
scheme.

• Third, adding empty bricks into the system will
result in data movement, as dictated by the invari-
ance of the object replication. Ideally, data copying
should only occur when there is a need to repair.
This overhead exists to purely satisfy the invariance,
has nothing to do with reliability, and further con-
tributes to protocol complexity.

• Fourth, DHT-based scheme does not support self-
identifying disks. When a brick already loaded with
objects is plugged into the system, all objects have
to be redistributed according to its key, and this
will take hours to complete.

• Finally, probably the most serious issue is that this
approach constrains the repair speed of any single
brick. The semantic of DHT-based replication im-

plies that the sources and the sinks to repair the
content of a failed disk are restricted to a few in its
logical neighborhood, and thus it cannot achieve a
high degree of parallel repair. In contrast, if repli-
cas can be randomly placed, repair can proceed in
parallel because the contents of the failing brick
have many sibling replicas stored on many bricks,
and repaired to equally many other bricks.

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

10
8

10
10

10
12

system scale in user data capacity (TB)
M

T
T

D
L

(y
ea

r)

random placement, k=4
DHT−based placement, k=4
random placement, k=3
DHT−based placement, k=3

Figure 2. Analytical result on data reliability as measured
by MTTDL (mean time to data loss) for various system
scales, replication degrees, and placement schemes. The
average object size in random placement is 10MB. Each
brick has capacity of 100GB, with disk bandwidth 5MB/s.
The network aggregated bandwidth for data repair is 3GB/s.
Mean time to failure of each brick is 1000 days. Each brick
fails independently with exponential distribution.

We diverge from our course of architectural discussion
a little by presenting some analytical results that support
our argument. Figure 2 shows the result based on an
analytical framework we developed to study brick stor-
age reliability [20]. The important point is that random
placement provides orders of magnitude better reliabil-
ity than DHT-based placement. However, our study [20]
also reveals that when the object size is small and thus
the number of objects is large, pure random placement
at the object level may also suffer degrading reliability.
This is because when the number of objects is large,
pure random placement exhausts all permutations of
placement and thus is very sensitive to multiple concur-
rent disk failures. Our work in [20] proposes modifica-
tions to overcome this problem in order to deliver high
reliability consistently across a wide range of object
sizes. For the discussion here, it suffices to point out
that more sophisticated placement is necessary.

The key point is that we need to decouple object place-
ment with the logical space. BitVault’s strategy thus
employs DHT-based index partition but with policy-
controlled replica placement. On the surface, this can be
achieved by combining the client-server architecture

Technical Report MSR-TR-2005-179, December, 2005

5

and DHT, as shown in Figure 1(c). In this approach, the
index of an object -- instead of the object itself, is kept
at the object’s root brick, and the index further points to
the k bricks storing the replicas (k being the replication
factor and can vary from object to object). This gives an
architecture that meets the majority of the requirements:
accesses are fully distributed, repair can be delivered in
parallel, heterogeneity can be leveraged, and there is no
need to move data any more when adding new brick.

This naïve approach, however, has a number of prob-
lems. If replica placement is purely random, then the
total failure detection traffic will amount to O(N2), with
each brick handling exactly the same amount as in the
client-server option. Complexities increase as well. In
addition to the DHT protocol that manages the space,
we still need to run the same replicated state machines
in every pair of logically neighboring bricks to keep the
index reliable and consistent.

The core of the above dilemma lies at the mindset inher-
ited from the client-server architecture, which places the
index at the center of the design: it must be kept reliable
and consistent, which is a precondition to trigger repair
upon failure detection. This need not be the case. The
last-copy recall property provides both challenges and
hints to the solution: in fact, the replicas should be
given the central role. As long as the replica is notified
when its index is gone, it can initiate repair to rebuild its
index. The index, in turn, can initiate replica repair if it
observes the loss of replica(s). We call this the object-
driven repair model. In order for this to work, a weakly
consistent membership service with the following guar-
antee suffices: any change to the logical space due to
brick addition and departure is eventually and reliably
known to every live bricks. In BitVault, we call this
service the Membership and Routing Layer or MRL in
short; this is so because MRL is also responsible to act
like a one-hop DHT to route message to its root brick.
Since indices are distributed to all bricks and they can
be reliably rebuilt, with the help of MRL we can afford
to use soft-state indices that are kept in memory, achiev-
ing all the remaining goals, as we will discuss in more
detail later.

In BitVault, all bricks participate in maintaining the
MRL. Many weakly consistent membership protocol
exist, with low maintenance overhead typically of
O(logN). BitVault’s MRL is implemented using XRing,
a perfect one-hop DHT (Section 4.1), with the insight
that the semantic is equivalent to a weakly consistent
membership protocol. The layering approach gives a
clear and clean division of responsibilities, and is criti-
cal to the simplicity of the BitVault design.

3.2 Per-brick architecture

The components of a BitVault brick are shown in
Figure 3. The MRL module is responsible for two
things. First, it implements the eventual membership
protocol and keeps a full list of all live bricks. It notifies
the DM and IM modules upon any change of the list.
Second, MRLs of all bricks collectively form a DHT.
Brick ID is a random number of 160bits, and the or-
dered list defines the zone of any live brick: the zone of
a brick x is (y.id, x.id], where y is x’s immediate logical
predecessor in the space. This is basically consistent
hashing as in Chord [31]. MRL provides the routeTo(key, msg) service to route a message, typically in one net-
work hop, to the brick whose zone owns key.

Figure 3. Components of one BitVault brick

Index module (IM) keeps the indices for any objects
that are rooted at this brick. The index is soft-state, and
records k pointers to the actual locations of the replicas,
where k is the replication degree of the object. IM lis-
tens to MRL for membership changes and issues repair
for missing replicas if necessary.

Figure 4. Example of the object layout in BitVault. Ob-
ject x has replicas in brick i, j and k, whereas object y has
replicas in brick j and k.

Data module (DM) stores replicas to local disk. Along
with the object we store a few metadata, including its
key and the specified replication degree. A reverse table
is built in the memory, and the table entries record the
physical addresses of the root bricks of the objects. This

Technical Report MSR-TR-2005-179, December, 2005

6

table is used to perform indices repair, also triggered by
the MRL notifications.

Finally, the Access module (AM) is a very light module
that serves as the brick’s gateway to external client re-
quests. Figure 4 shows the relationship of these compo-
nents with some replica placement examples.

3.3 Individual protocols

3.3.1 Checkin/checkout

The checkin request carries the object, the replication
degree k, supplied from upper-layer application and the
object’s key. The checkout request needs the key as the
only parameter. Both requests can be submitted to an
arbitrary brick in BitVault.

When performing checkin, the brick will invoke the
placement policy (detailed in Section 3.3.4) to pick k
bricks, and send replicas to these bricks. When the first
acknowledgement is received, the checkin procedure is
completed from client’s perspective. If desired, the
checkin can wait for more replicas’ responses.

Figure 5. Object index state machine.

A brick persistently stores a received object to its DM
and at the same time publishes the object with an ipub-lish message. Out of all messages in BitVaut, this is the
only one that needs to be reliable, and we ensure this
with ack/resend mechanism. This message uses the ob-
ject’s key and is routed through MRL to reach the root
brick; the message also includes the specified replica-
tion degree. The ipublish message is one of the events
that trigger the index state machine (Figure 5) at the
root brick. An index has two possible states: partial and
complete. A pointer in the index is valid if and only if
the brick pointed to is alive and contains a copy of the
object. A complete index has the number of valid point-
ers equal to the specified replication degree; whereas a
partial index is the one with fewer valid pointers. There-
fore, when receiving the first such message, a root brick
will start a partial index with one valid pointer. At the
same time, it will start a timer. If k such pointers are
collected, the index becomes complete and the timer is
stopped. However, if the timer expires before enough
pointers are collected, repair will be triggered.

Checkout is simple; the request is routed to the root
brick, and follows any one of the pointers to retrieve the
object.

3.3.2 Repair of permanent failure

The last-copy recall property dictates both the accessi-
bility and the total restoration of replication degree as
long as the very last copy survives, independent of any
other component failures and their sequences. For ex-
ample, right after we restore another copy, both the
source replica and the index disappear simultaneously.
In this case, the last-copy transit from one replica to the
other and this sequence can occur infinitely number of
times. However, once the system stabilizes, both the
index and k replicas should be intact.

Translating the last-copy property to the BitVault data
structure, we have the following properties: a) eventu-
ally an object’s index is always found at the root brick
of the object, and b) eventually all indices should be in
the “complete” state. BitVault relies on the membership
service provided by MRL and the reliable ipublish mes-
sage to deliver both, and with a very simple set of
mechanisms.

• Indices repair: the DM filters membership change
events sent from MRL. For any object whose root
shall now change to a different brick (either due to
brick failures or additions), DM issues the same ipublish as it receives the object the first time to-
wards the new root via MRL. The first ipublish
message establishes a partial index at the root; the
rest k-1 messages turn the index state to complete
and hence repair the index. Since indices are parti-
tioned across all members, index repair occurs
when there is any membership change. An optimi-
zation to improve index availability is to lazily
backup x’s indices to x+1, so that x+1 can serve
with the cached indices when x crashes and x+1
takes over.

• Data repair: the IM filters membership change
events sent from MRL. For any index that has rep-
licas in a failed brick, the IM changes its state from
complete to partial and instructs one of the replica
keepers who, after consulting the object placement
policy, inserts another copy to the selected brick.
Data repair occurs only when brick crashes.

These are the only necessary steps. Notice that when a
new replica is made, the receiving brick will generate an ipublish message towards the root, and the message
changes the corresponding index’s state to complete
again and thus closes the repair cycle. Should anything
interrupt this distributed procedure, the fact that the
index will stay in the partial state means that repair will

Technical Report MSR-TR-2005-179, December, 2005

7

continue to happen. This is true even when multiple
failures occur (e.g. the index and several replicas are
gone simultaneously). While an elaborate proof is out of
the scope of this paper, we offer an informal argument
that these set of protocols deliver the last-copy recall
guarantee.

We assume that failures have wiped out all but the very
last copy. The membership service of MRL has the fol-
lowing properties: eventually and with high probability
in O(logN) time bound (where N is the number of bricks
in the system), every live bricks is known to every brick,
whereas every failed brick is excluded. Since the mem-
bership list defines a DHT space, this means that the
last copy can watch the change of its root, and hence
publishes towards the root the ipublish which includes
the specified replication degree. Notice that this can go
on even if the root changes infinitely often (due to brick
crash or addition), and if the last-copy transit from one
replica to the other. This message will start a partial
index and the repair timer which, when expired, will
instruct the last copy to insert new replicas into the sys-
tem. The cycle is forced to its closure if and only if
enough replicas are generated and the index state is
changed to complete.

We note two key properties here. First, the repair strat-
egy is object-driven. Indeed one can say that repairing
missing replicas is triggered by the index being at the
state of partial, but the index itself is generated from
any surviving object replicas. This is different from
many existing approaches that rely on the robustness of
index coupled with direct monitoring to data so as to
ensure availability. Second, the contents of a DM are
pointed to from IMs of many different bricks, and their
sibling replicas are spread across the whole system.
Thus, both repair triggering and repair source are dis-
tributed, and this is the basis of rapid and parallel repair.
Figure 4 illustrates both points: if brick j fails, index
repair for object x can be triggered by either brick i and
k, and data repair for object x and y can be processed by
i and k in parallel.

A simple calculation can show the gain of parallel re-
pair. When using parallel repair, we need to consider
the network bandwidth, especially the bandwidth of the
root switch since it may become the bottleneck. Let
BBRICK be the disk I/O bandwidth, BNET be the available
bandwidth of the root switch for data repair. Then the
parallel repair degree Nr, the number of repair source-
destination pairs that can participate in repair in parallel,
is given by Nr = BNET/BBRICK. Nr is the repair speedup, if
the object replicas are spread evenly among roughly Nr
bricks. For example, if the disk bandwidth BBRICK =

5MB/s, and the available root switch bandwidth BNET =
1GB/s (67% of a 1Gigabit 24 port switch bisection

bandwidth), then Nr = 200, which means instead of tak-
ing more than one day to repair one failed disk with
500GB data, the parallel repair can be done in 8 min-
utes. This immensely reduces the repair time and thus
the vulnerability window. Therefore, spreading replicas
among a large number of bricks can achieve much faster
data repair speed.

3.3.3 Brick additions

A new brick is ready to join the service after it installs
the BitVault code. It takes a random ID and contacts
any of the existing bricks. As part of the MRL protocol,
all live bricks will include this new brick into their
membership list; likewise, the new brick acquires the
same list as well. This typically converges in O(logN)
time. Since BitVault uses consistent hashing to partition
the space, for any objects whose root changes to the
new brick, their hosting DMs will issue index repair to
build indices onto the IM of the new brick. Similar to
the optimization that improves index availability when
dealing with brick failure, when x joins, brick x+1 can
split its indices that belongs to x and sends it to x, so x
can have a cached copy of indices to begin serving.

If the new brick is empty, typically the background
load-balance process will kick in to move some replicas
to the brick. If, however, the brick comes with some
objects already, it will initiate index repair for these
objects via the ipublish messages towards their roots,
and then data repair will be triggered to replicate the
objects to other bricks. This is how the object-driven
model implements self-identifying brick.

3.3.4 Load-balance

When the system evolves with brick failures, brick addi-
tions and data repair movements, the storage load on
bricks is likely to be unbalanced. Unbalanced load re-
duces object access performance since overloaded
bricks become bottleneck while underutilized bricks are
mostly idle.

To address the load balance issue, BitVault performs
background load balancing operations. Periodically,
each brick queries an in-system monitoring utility
SOMO [36] (further discussed in the implementation
section) to gather the information about the average
load and low-load bricks in the system. If the load of the
current brick is over a certain threshold than the average
load (in our prototype it is set as 5%), then the brick
will randomly pick some replicas on it and move them
to the low-load bricks. As before, the bricks receiving
the replicas will send ordinary ipublish messages to
build indices. When the source brick receives confirma-
tion from the sink brick that a replica has been created
there, it issues a delete message to the root of the object.

Technical Report MSR-TR-2005-179, December, 2005

8

The delete protocol is coordinated at IM. It first re-
moves the pointer to the replica to be deleted, and then
insert this pointer to a delete pool. The IM then picks an
entry from the delete pool and issues a delete request to
the target brick. It will keep on retrying until an ack is
received. The entry is removed from the delete pool if 1)
the ack is received or 2) the target brick crashes (as
notified by MRL). The protocol works correctly and
ensures that there is never a situation where we have a
dangling pointer. The worst can happen is that there is a
replica that the index is not aware of, and this occurs if
the delete pool, as a soft-state in memory, somehow is
corrupted. In this case and all others where the local
state (including the index) may be bad, we simply reset
the brick itself and let transient failure handling to fix
the problems.

The delete protocol is not exposed as an API, but it can
be invoked not only by the load-balancing process, but
also for other garbage collection purposes as we will
discuss shortly.

3.3.5 Dealing with transient failures

In the context of BitVault, many transient failures can
occur: reboot as a result of software upgrade, cable drop,
switch failures, power failures etc. In these cases, some
data may become inaccessible for a short period of time,
and as long as some bricks are alive, the system can still
operate, albeit with reduced performance.

The primary difficulty in dealing with transient failures
is that it is hard to tell whether a failure is transient. It is
true that in some instances such as software reboot,
there may be a way of informing the nature of the dis-
ruption. However, in general, that only adds administra-
tion overhead, which is what we want to avoid at the
first place. One can delay the triggering of repair, hop-
ing that the affected components can return online soon.
However, this only enlarges vulnerability window if the
failure is in fact permanent.

Our strategy is to initiate repair regardless. The worst
that can happen is that, when the bricks come back
online, extra replicas exist. We set a high watermark
(e.g. k+1) and when the total number of copies exceeds
that threshold, we will start deleting until total copies
equal to k. Notice that if future failures reduce replicas
to k or above, no repair is triggered. Also, if the water-
mark is equal to k, then eventually the replication de-
gree is strictly enforced. This strategy is the same as
what is proposed in TotalRecall [5].

3.3.6 QoS control

BitVault needs some QoS provisions in order to guaran-
tee stableness. First of all, MRL messages are delivered
and processed with the highest priorities. If they are

jammed, false failures may be declared, resulting in
cascading false repairs which will eventually cause the
system to collapse. Ideally, other protocol messages
should be prioritized accordingly as well, but we have
not implemented them yet. Secondly, for a very large
installment, even though BitVault can quickly process
repair, there is no guarantee that there shall be no con-
current repairs of multiple bricks in the system. Just as
in GFS[14], repair of objects that have lost more repli-
cas should take higher priority. This is governed by a
set of rules that run at the repair source (i.e. the DM
module of a brick who is instructed to make another
copy in the system):

• A repair quota (in terms of bytes/second) is en-
forced. This is the upper bound that a brick can
copy out replicas and hence occupy network re-
source for the purpose of repair.

• The repair request, generated from the IM that
keeps the index, carries number of remaining repli-
cas. With this, the repair source can calculate lo-
cally the repair ranks of all pending repair requests.
Higher ranked repairs are those that have lost more
replicas, and take higher priorities. Requests of the
same rank are ordered according to the failure time
of the departed brick.

These rules are simple and practical, but they are not
complete. For instance, it is possible for a brick to con-
tend network resources with repair requests that have
lost only one replica, while there are ongoing repairs of
higher ranks initiated from other bricks. Also, there is a
natural tension between enforcing QoS quota and
maximizing repair speed. This remains as one of our
ongoing research work.

3.4 Discussion

The design we have described achieves all design goals
iterated at the beginning of this section. Adopting a lay-
ering design and leveraging a weak and eventual mem-
bership protocol allows us to scale out with a fully dis-
tributed architecture, deliver last-copy recall and rapid
repair, all without the need of any global consensus
protocol or distributed transaction protocols.

There are several fundamental reasons. First of all, there
is already a global agreement before a brick starts its
life in BitVault, namely it is joining a logical space
composed by all live bricks. To deliver the last-copy
recall, only the eventual consistency of the membership
is necessary, hence there is no need for a strong consen-
sus at run time. Dealing with reference data means that
we can work with immutable objects. Had we wanted to
support in-place updating, then without any doubts we
must employ transactions. The decision to allow extra

Technical Report MSR-TR-2005-179, December, 2005

9

copies to temporarily exist is also important. We have
described earlier that extra copies will be generated
when handling transient failures and doing load balanc-
ing. Moreover, even when replicas are fully installed
but the associated ipublish messages are delayed, the
repair timer at the index will trigger new round of repair,
also resulting in extra copies. These copies will eventu-
ally be garbage collected. Since storage capacity is be-
coming far less an issue and that in no time we have
compromised the correctness of the system, we believe
that this is a right tradeoff to make.

The current design is fully distributed and each brick’s
functionality is completely symmetric. However, if re-
quired, with very little change we can accommodate
design points between fully distributed/symmetric and
centralized. We can divide the logical space into two
equal halves, let indices be on the one half and all repli-
cas be on the other (controlled by the object placement
policy). Thus, bricks in half of the space are serving
indices, and the rest are storing replicas. In the extreme
case, there can be only one brick on the index half, and
hence this becomes essentially a GFS-like system. The
density of the bricks in either half of the space can be
dynamically adjusted. This is the flexibility brought by
working with a DHT-like logical space.

4. Implementation

4.1 Membership and routing layer

•logical space integrity
•routing termination

•baseline O(logN) routing

•Best effort one hop routing

Leafset

Finger table

Soft-state routing table (SSRT)

Figure 6: the 3 layers of routing tables in XRing and

their corresponding functionality.

We have defined the two responsibilities of the MRL
earlier. First, it provides an eventual membership ser-
vice: once the system is stabilized, every live brick will
eventually include in its membership list all of the ac-
tive bricks only. The convergence should be as rapid as
possible. Second, it should give an abstraction of DHT.
Many of the other design decisions, such as soft-state
index, object-driven repair model as well as rapid and
parallel repair, depend on MRL.

An eventual membership service does not require the
agreement among bricks on the intermittent membership
views of the system. Therefore, more expensive view-
based group membership protocols (e.g. [6], [8]) are not
necessary. Many eventual membership protocols exist,
such as SWIM [11]. These protocols gain their scalabil-

ity by dividing the protocol into two correlated parts:
failure detection and failure dissemination. Since MRL
needs to function as a DHT also, we choose to extend a
best-effort one-hop DHT called XRing[34] to avoid re-
implementing a full membership service. The key in-
sight is that an eventually perfect one-hop DHT imple-
ments just that. Such a DHT is the one that lookup is
resolved always in one-hop when the system stabilizes.

XRing divides a 160bit logical space with participating
nodes using consistent hashing as in Chord[31]. Each
node in XRing has a three-layer data structure main-
tained by three protocols (Figure 6). The first two layers
are rather conventional. The lowest one is the leafset,
which is a set of 2L+1 nodes including L closest nodes
on each side of the DHT logical space plus the home
node itself. The heartbeat messages carrying the full
leafset of a node are sent between every pair of leafset
nodes to maintain the leafset data structure. Leafset
members use a voting mechanism for detecting and
broadcasting brick leave and join events to reduce erro-
neous detections. The middle layer consists of a finger
table, which contains O(logN) entries to implement a
straightforward O(logN) prefix-based routing algorithm.
A node’s i-th finger points to the node that owns the key
that is identical to the node’s ID except with the i-th bit
flipped. Regular probing messages are sent to finger
table entries to detect failures and repair the finger table.
Finally, the third layer SSRT (soft-state routing table)
enables one-hop lookup performance with high prob-
ability. SSRT is maintained by broadcasting node join
or leave events detected by the leafset heartbeat proto-
col using a scalable broadcast through finger and leafset
members. The SSRT structure of XRing already con-
tains most brick membership information, but does not
satisfy the eventual reliability because the broadcast,
though has O(L+logN) redundancy, is best-effort.

To enhance the SSRT structure of XRing to provide an
eventually reliable membership service, we add a back-
ground anti-entropy protocol so that bricks can periodi-
cally reconcile missing membership information with
other random nodes in the system. More specifically, at
some regular interval, each brick x computes a signature
based on its local SSRT, and sends it out to a brick y
randomly selected from SSRT. When y receives the
anti-entropy message, it compares with the signature
computed from its local SSRT, and if it’s different from
the received signature, it sends its SSRT back to x.
Brick x merges its local SSRT with the SSRT received
from y. If x detects that its local SSRT is actually more
up-to-date, it sends its SSRT back to y. To guarantee
that the latest leave or join event about a node is the
correct one reflecting the node status, timestamps are
used on events. Therefore, in order to achieve fast
SSRT reconciliation, in an anti-entropy round a brick is

Technical Report MSR-TR-2005-179, December, 2005

10

both trying to pull an SSRT from and push its own
SSRT to a randomly selected brick. We optimize the
protocol such that when the delta is only one missing
event, only that event is reconciled instead of sending
the whole SSRT.

With the periodic anti-entropy protocol, bricks can
quickly resolve the differences in their SSRTs in one or
a few anti-entropy rounds, ensuring that eventually
every brick will have all the latest membership change
events. We have verified this through extensive simula-
tions as well as theoretical analysis.

The anti-entropy protocol is also used when a new brick
joins for the first time or rejoins after leaving the system
for a while. In this case, the new brick either has no
SSRT at all or a possibly outdated SSRT, and the anti-
entropy protocol will quickly bring its SSRT up-to-date.

It is interesting to see how XRing implements the two
stages of a weak membership protocol: the leafset de-
tection corresponds to membership change detection in
a local range, fingers maintain a structured graph for
fast event dissemination, and that randomized anti-
entropy gives the eventual convergence guarantee. Us-
ing a DHT to implement the membership service has its
advantages. For instance, the loads of failure detection
are evenly distributed, and that node join is handled by
default.

4.2 In-system monitoring utility

The task of an in-system monitoring utility is to gather
various statistics, filter and aggregate them, and dis-
seminate the results back to each brick. These statistics
are necessary to guide replica placement at check-in,
repair as well as load balance time.

This functionality is delivered by an improved version
of SOMO[36], a self-scaling and self-organizing meta-
data overlay layered over any DHT. The basic idea of
SOMO is to draw a logical tree with a fixed fan-out (e.g.
8) first. The positions of the tree nodes can be calcu-
lated by each brick independently. Given its responsible
zone in the DHT, each node selects the highest logical
tree node that it hosts as its representation in the SOMO
hierarchy, and then calculates the position of the parent
logical node, routes to that parent tree node to form a
child-parent link. A hierarchy is thus built in a self-
organized fashion. The SOMO hierarchy is completely
self-governing and self-healing, and can gather and dis-
seminate metadata in O(logfan_outN) time.

Periodically (e.g. 5s), the top-n and bottom-n list of
disk-usage information are obtained by performing
merge-sort when they are gathered towards the root of
the SOMO tree. Total storage utilization is aggregated

along the upward path as well, allowing each brick to
calculate the average load individually. These metadata
are then propagated downwards through the SOMO
hierarchy to reach every brick. In our implementation, n
is 500 and the SOMO fan-out is 8. We note that other
alternatives such as RanSub[18] can accomplish the
same functionality as SOMO does.

4.3 Prototype strategy

BitVault is prototyped entirely using a tool we have
developed called WiDS (WiDS implements Distributed
System). WiDS combines three aspects of a typical de-
velopment process: prototyping and debugging, large
scale simulation and deployment. WiDS defines a mes-
sage-passing API and also includes fundamental utilities
such as one-time and periodical timers. Protocol logics
are written using these APIs and timers. Messages and
events can be queued into an event-wheel, enabling
many instances of the protocol logics to be debugged
within one process while causality among events is en-
forced. We can emulate wide-area conditions by speci-
fying simulated latency and packet loss over arbitrary
pair of communication ends. This allows us to under-
stand how the system behaves in different network set-
tings and also stress different code path. To speed up
simulation, WiDS also has a parallel and distribute
simulation version. We have successfully simulated
complex protocols for 1 million nodes scale, using 250+
machines. Finally, when the protocol code is relatively
mature, we re-link it to a different WiDS package which
uses sockets to send messages, thus produces an execu-
table that can be deployed and run with real network. In
this mode, preliminary logging supports are provided.
In the future, we plan to log enough events so that we
can replay them in the debug mode. One important
point of WiDS is that there is no code divergence: the
core logic remains the same in every aforementioned
stage. All components of BitVault and WiDS are im-
plemented using C++. Currently, BitVault, XRing,
SOMO and WiDS have about 6K, 4K, 2.5K and 7K
lines of code, respectively.

The prototype includes most of BitVault’s key features,
except some advanced QoS control of repair and the
optimizations to improve index availability.

5. Building applications over BitVault

Any complete applications that use BitVault as the
backend storage must incorporate some mechanism to
manage the object IDs. One solution is to set aside a
SQL database for this functionality. However, the data-
base server is single point of failure and, under heavy
loads, a scalability bottleneck and single point of failure.
We explore another alternative by using the Catalog

Technical Report MSR-TR-2005-179, December, 2005

11

utility which builds application-level and soft-state in-
dex inside BitVault.

When an object is stored into BitVault, it can optionally
take a “tag” which is persisted to disk along with the
replicas. The tag must contain a keyword and a descrip-
tor, both supplied by the applications. Later, the appli-
cation can use the hash of the keyword to retrieve a list
of objects that share the same keyword. This list is
called a catalog, each entry of which is an <OID, De-
scriptor> pair. Catalog is entirely soft-state and is built
in the same way that the object index is built: the node
that receives a replica, when seeing its tag, publishes
towards the node that contains the hash of the keyword.
The node receives the tag then appends the entry to the
catalog with the specified keyword. If membership pro-
tocol indicates that the node covering the keyword of a
catalog changes, we rebuild the catalog by republishing
the tags. This is a simple and robust mechanism to add
metadata management support inside BitVault.

We now discuss two BitVault applications, both of
which respond to day-to-day requirements from users in
our lab and are ready to be deployed.

BitVault Client Utility (BCU). BCU allows users to
backup and retrieve their files (documents and project
files) from any desktop as long as they can connect to a
BitVault store. Interestingly enough, in many cases us-
ers do this via the mail server. In BCU, a client piece is
fully integrated with Explorer, upon right click the user
can choose to checkin the file or directory, or retrieve
its version history and select one to checkout. A tag is
always generated and checked into BitVault along with
the object. The keyword of the tag is the hash of a
user’s account name, and the descriptor is the complete
path of the file name and optional text annotation. Thus,
inside BitVault there is a complete catalog corresponds
to a user. BCU can retrieve this catalog keyed by hash
of the user account, parse and load into an Access data-
base file so the user can perform simple queries and
checkout different versions of files.

Machine Bank. Like many research institutes, MSRA
has a large shared-lab for hundreds of intern students.
The shared-lab scenario is such that there is a tension
between flexible resource utilization and productivity.
A student may get a different PC across different work-
ing sessions. It is therefore important to preserve their
entire working environment across sessions, or other-
wise the students will frequently use the server of their
associated research group, and consequently reduce a
capable PC to a dummy terminal. In Machine Bank,
analogous to the safebox of a banking institute, PCs in
the shared-lab run Microsoft’s Virtual PC. A VM (Vir-
tual Machine) is broken into 64KB blocks and stored
into BitVault. Since majority of the VM images across

different users and time are the same, thus most of the
blocks are the same. This avoids the problem of having
each VM takes its entire space, Each PC also imple-
ments local persistent cache to improve the performance,
and at the end of a session only modified blocks are
checked into BitVault. The mapping between the blocks
and their hash is captured in a file called Virtual Ma-
chine Instance (VMI). When all modified blocks are
checked into BitVault, VMI is checked in as well with a
tag which uses the hash of the user account name as the
keyword. Thus, a catalog of the user’s VM images are
built and stored inside BitVault. At the beginning of the
login, the user can select any VM instances in the past
to reinstantiate at the current PC, thus accomplishing
the task of seamless work environment migration both
across time and space. More details can be found in [].

-- old stuff below --

Figure 7 illustrates a prototype application we have
built on top of BitVault. The Web application presents a
Microsoft Sharepoint-like interface, displaying objects
for which there is a local copy. A SQL server stores, for
each object, the hash key, metadata such as replication
policy, user supplied descriptions and finally its audit
trail (the access history). Simple queries can be issued
against the SQL.

Figure 7. BitVault cross-site architecture.

In this application, multiple geographically distributed
BitVault sites can link up for disaster-tolerance. As a
user-specified parameter at the time of check-in, an ob-
ject can be replicated within a site only, or across multi-
ple sites. If an object can not be retrieved from the local
site, the checkout request is sent to other sites that have
the replica, which is then re-inserted into the local site.
The set of sites where an object is replicated is also part
of the check-in parameter and kept in SQL.

We have set up BitVault with 5 sites: two in our Beijing
lab, two in Redmond each at different building, and
finally one in Silicon Valley. The setup survived several

Technical Report MSR-TR-2005-179, December, 2005

12

unplanned downtime (moving an entire site to a differ-
ent location, or unplugging cables).

While the first application uses database to do the
bookkeeping, we are also evaluating the option of lev-
eraging per-client’s local file system for interactive and
online backup using BitVault. One design lets user se-
lect what files and/or directories they want to backup.
Each file can thus have three states: no backup, local
copy + backup, and backup only. This gives the user the
flexibility of moving and reclaiming capacity between
his local machine and his allotment in BitVault. A small
database file that records the files being backed up is
also backed up into BitVault, and is accessed with a
unique key known only to each user. This allows the
user to reborn his backed up files on another machine.

Finally, we note that BitVault’s smart brick is underuti-
lized in terms of their CPU power. We are evaluating
the option of introducing some preliminary searching
and index building functionality into the BitVault layer.

6. Evaluation

This section provides detailed evaluations of all major
aspects of BitVault. We build a prototype of 30 bricks,
each of which is a commodity PC. These PCs run Win-
dows XP, and their hardware configurations are 3GHZ
Pentium4 CPU, 512MB memory and 120GB STAT
Seagate disk. These PCs are connected with two AT-
8324SX 100Mb switches stacked together. Unless oth-
erwise specified, k=3 in all experiments.

Except the one on MRL performance, all results are
obtained through the direct measurement of the 30-brick
prototype.

6.1 Performance of MRL

We use simulation to study the performance of MRL. In
this experiment, we select a node to crash from a stabi-
lized system. As we mentioned earlier, the membership
protocol works in two phases. In the failure detection
phase, the leafset nodes vote out a dead neighbor. In the
failure dissemination phase, the takeover node starts a
broadcast through its fingers and leafset nodes. The
broadcast is best-effort and the anti-entropy protocol
ensures eventual convergence.

XRing’s leafset heartbeat, finger probing and anti-
entropy use interval of 5s, 5s and 10s respectively. The
leafset size is 8 (i.e. 4 logical neighbors on each side). A
brick marks a neighbor as dead after failing to hear
from it in 3 heartbeat cycles. The vote among the leafset
members will declare a brick’s departure in 10~20 sec-
onds. To understand the MRL’s robustness, we drop r%
of packets. The dropping applies uniformly to all types
of MRL messages.

1000 2000 3000 4000
13

14

15

16

17

System scale

D
et

ec
tio

n
tim

e
(s

)

(a) Failure detection time

1000 2000 3000 4000
5

10

15

20

System scale

La
te

nc
y

(m
s)

0%
40%

(b) Membership convergence time

Figure 8. Failure detection time (a) and convergence
time of MRL (b)

Figure 8 shows the failure detection and convergence
speed, for different system scale and we use two drop
rate, 0% and 40%. The failure detection time is around
16 seconds, irrespective of system size. This is because
that the detection is done through the leafset nodes. This
value is consistent with what we observed in prototype.
We set the network latency to be 2ms, and thus conver-
gence speed is very fast and rises with O(logN) in gen-
eral. Higher drop rate yields longer converging time,
but the difference is negligible in practice.

6.2 Check-in and check-out

Table 1. Latency of Checkin/out request

Client Request Latency(ms)
Remote NTFS 1-brick 30-brick Size

CI CO CI CO CI CO
10K 5 4 11 4 17 7
100K 17 14 19 12 34 18
1M 147 118 105 99 220 105
10M 1437 1155 1003 995 2126 1009

Our first study compares the raw checkin and checkout
performance in the 30-brick prototype with different
object sizes. The requests are issued synchronously, and
the results are the averages of 10 runs. We also compare
against a 1-brick and the native read/write performance
of a remote mounted NTFS directory (k=1 for these two
configurations). The result is summarized in Table 1.
The 1-brick data is comparable with the remote NTFS.
The 30-brick case adds more network trips, but the per-
formance is still competitive.

Next we study scalability. In this test, there are 14 cli-
ents. Each client executes a loop to fire synchronous
requests to a prototype system with varying numbers of
bricks (from 2 to 16). Objects requested do not overlap
across clients, and object IDs are random. Checkin and
checkout are measured separately. Figure 9 shows the
total throughputs in MBytes-per-second against number
of bricks. The results are average values over 20 runs
and the object placement policy is random.

Technical Report MSR-TR-2005-179, December, 2005

13

4 6 8 10 12 14 16
10

20

30

40

50

60

70

80

90

100

Number of Server Nodes

A
gg

re
ga

te
 C

lie
nt

s
B

an
dw

id
th

 (
M

B
P

S
)

Performance Scalability

1M CheckIn
1M CheckOut
10M CheckIn
10M CheckOut

Figure 9: checkin and checkout throughput for 1MB
and 10MB objects.

The checkout performance is 3~4 times better than
checkin, simply because for each checkin there are 3
times more requests going to the disks. Checkout of
10MB objects is better than 1MB due to sequential ac-
cess to disks. After brick number increases to 14, the
curves become flat because the client requests can no
longer overload the bricks. Because the clients fire re-
quests synchronously and that the requests are randomly
scheduled to bricks, brick loads are not completely even
and thus the scalability curve is sub-linear. We can not
fully get rid of the caching effect of the hosting file sys-
tem, and this is the reason that checkin performance of
1MB is close to that of 10MB. The maximum through-
puts of checkin and checkout of 10MB object is
97MB/s and 35MB/s, respectively. These numbers are
comparable with the GFS[14] data on a similar testbed
configuration.

6.3 Repair performance

Table 2 takes a closer look at what happens inside the
system under repair. We let each brick log the number
of objects and indices it hosts periodically, and merge
them at the end after aligning the clocks. In this experi-
ment, every brick has 30K 1MB objects (30GB/brick),
and we fail several bricks in sequence. We vary the total
number of initial bricks at a step of 5 bricks.

Table 2. Repair speed experiment. The experiment is
done by initially setting 5i healthy bricks with each one

filled by 30G replicated data. Then manually fail one brick
and measure the time to repair 90% of the lost 30G data.

Repair Bandwidth Brick Number
(after crashed)

Time to repair
90% (min)

MB/s GB/m

4 56.4 8.2, 0.5
9 20.3 22.8, 1.4
14 9.9 46.5, 2.8
19 9.3 49.4, 3.0

24 5.3 86.4, 5.2
29 5.3 87.8, 5.3

The total duration to repair 30GB data with 20 and 30
bricks takes 600 and 300 seconds each, giving a repair
rate of 50MB/s and 100MB/s, respectively. The super-
linear improvement is probably due to better utilization
of memory and other per-brick resources. The rate of 20
bricks is about 1/8 of what a 227-node GFS cluster
achieves [14]. BitVault’s repair performance shall im-
prove nicely with number of bricks (up to a ceiling im-
posed by the network bandwidth), and we are confident
that it is comparable with the GFS performance.

6.4 Performance under failure

BitVault should self-heal and continue to function even
in the face of failure. To verify this, we conducted
checkin from 16 clients into a 16-brick BitVault, and
then failed one brick. Each client continuously checks
in 1MB size objects. We gather statistics in units of 5-
second granularity. For the client-side throughput, we
log the aggregate throughput in terms of total successful
checkins. Similarly, we log the total number of objects
that the bricks receive, again aggregated over all bricks.
At the 10th minute, we failed one brick. The client-side
throughput corresponds to what users perceive, while
the server-side throughput reflects both the checkin traf-
fics as well as the repair traffics. The expected behavior
is that the performance will drop while repair is going
on, and then return to the normal level afterwards.

Figure 10 shows the variation of the throughput of both
clients and servers, and the server-side throughput is
normalized by 3 (the replication degree). Before the
crash and after the repair, the client-side throughput
matches with the server-side throughput. However, after
the crash and during the repair window, the client-side
throughput decreases because resources are dedicated to
repair the failed disk. The repair traffic, represented by
the exceeding dark area, corresponds to about 3GB
worth of data on the failed disk. The repair window is
about 70 seconds. If there were more data on the failed
disk, the repair window would increase. During repair,
whether repair traffic takes higher priority than user
requests is a policy issue. In this prototype, they com-
pete against each other with the same priority (only
MRL messages have higher priority).

Technical Report MSR-TR-2005-179, December, 2005

14

400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

time (seconds)

ag
gr

eg
at

ed
 th

ro
ug

hp
ut

 (
M

B
/s

)

server throughput
client throughput

Figure 10: performance under failure experiment.
Server throughput is normalized by 3. A failure is intro-
duced around the 10th minute.

7. Related work

As stated in [25], the primary challenges for systems
like BitVault will not be performance but, instead, man-
agement and availability. The primary contributions of
BitVault are: 1) use eventual membership protocol with
a DHT abstraction to offer great scale-out capability
with low overhead and in a self-managing fashion, and
2) employ massively parallel repair to achieve very high
data reliability and availability, and 3) deliver both with
a simple architecture. Below we will contrast its core
contributions with previous systems.

Single-box solutions such as Venti[26] cannot meet the
challenge of coping with the volume and growth rate of
reference data; client/server architecture such as
GFS[14], NASD[14] and WiND[4] works to certain
extent but will hit bottleneck as well. The fact that ob-
jects are often small and there is no or little access lo-
cality exacerbates the scaling problem further. Existing
fully distributed proposals such as Boxwood[23],
FAB[11], Petal[20] and xFS[3] all require strong con-
sensus protocol which, even when is not placed on the
critical path, presents a scalability challenge.

The DHT-based systems such as Oceanstore [19], Pond
[28], CFS [10], Ivy [24], PAST [30] and Pastiche [9]
have gone to the other extreme. They operate over a
logical space with a hash table abstraction, maintain a
small list of other members (O(logN) and traverse the
space in O(logN) steps, often require replicas to be
placed on a fixed set of nodes starting from the one that
hosts the hash of the object. They primarily target at
wide-area P2P sharing scenario, and are thus self-
organizing and can scale out. However, their target con-
text is dynamic and has led to legitimate concerns on
what guarantee these systems can provide [7]. In the

course of designing BitVault, we have found that, un-
fortunately, these designs do not fit the more benign
environment either. The restriction of placing replicas
sequentially impacts the ability of handling heterogene-
ity for better storage utilization, causing data movement
not for the sake of repair but to satisfy the placement
invariants. Coupling object placement with the logical
space does not support self-identifying disks, and does
not leverage abundant network bandwidth to achieve
rapid and parallel repair. These are the issues that can
only be solved by using indices to control the placement.

The problem of using indirection is that it introduces the
indices as yet another vulnerability point. The conven-
tional methodology, adopted by many including
GFS[14] and TotalRecall[5], has been to first ensure the
integrity of index, which then reacts to failures via fail-
ure detection. BitVault demonstrated that, if coupled
with an eventual membership service, the object-driven
repair strategy, one in which the survival of the last rep-
lica can quickly restore both the index and the rest of
replicas, is both simple and effective. This architecture
also affords very rapid repair by spreading repair loads,
which has so far only been done in a centralized-
indexed system such as GFS [14].

EMC Centera [12] is a brick-based retention platform
that aims at self-healing and manageability. However,
no architectural details are available, and its scalability
target is not clear.

BitVault as a scalable store for immutable object is only
a starting point. For example, it is conceivable to use
Farsite[2]’s directory service for the namespace while
storing objects inside BitVault. Similarly, if we com-
bine an in-system P2P locking protocol [22], it is possi-
ble to build a file system, perhaps in the same style as
Frangipani [33].

8. Conclusion and future work

The main objectives of a large-scale distributed storage
system are its maintainability and availability. P2P
technologies – currently widely explored for wide-area
context, are immensely interesting design alternatives in
keeping the management cost down. When large
amount of components are brought together, they also
bring the possibility of doing massively parallel repair
for high data availability. BitVault has demonstrated
both of the above points.

Our future work will focus on developing BitVault ap-
plications in order to understand whether new function-
alities are necessary inside BitVault. This includes the
client utility that backs up user selected files/directories
in their private namespace, and also an initiative to
build search and query layer on top of BitVault.

Technical Report MSR-TR-2005-179, December, 2005

15

References

[1] “Enterprise Storage Group Reference Information: The Next
Wave.”, June 2002.

[2] A. Adya, W.J. Bolosky, M. Castro, et al, “FARSITE: Federated,
Available, and Reliable Storage for an Incompletely Trusted
Environment”, OSDI’02.

[3] T.E. Anderson, M.D. Dahlin, J.M. Neefe, et al. “Serverless
Network File Systems”, SOSP’95.

[4] A. Arpaci-Dusseau, R. Arpaci-Dusseau, et al, “Manageable
Storage via Adaptation in WiND”, CCGrid'01.

[5] R. Bhagwan, K. Tati, Y.C. Cheng et al, “Total Recall: System
Support for Automated Availability Management”, NSDI’04.

[6] K. Birman and R. van Renesse, “Reliable Distributed Com-
puting with ISIS Toolkit”, IEEE Computing Society Press,
1994.

[7] C. Black, R. Rodrigues, “High Availability, Scalable Storage,
Dynamic Peer Networks: Pick Two”, HOTOS’03.

[8] G. V. Chockler, I. Keidar, and R. Vitenburg, “Group commu-
nication specifications: A comprehensive study”, ACM Com-
puting Surveys, 88:4, 2001, 427—469.

[9] L.P. Cox, C.D. Murray, B.D. Noble, “Pastiche: Making
Backup Cheap and Easy”, OSDI’02.

[10] F. Dabek, M.F. Kaashoek, D. Karger, et al, “Wide-area coop-
erative storage with CFS”, SOSP’01.

[11] A. Das, I. Gupta, A. Motivala, "SWIM: Scalable Weakly-
consistent Infection-style Process Group Membership Proto-
col", DSN’02

[12] EMC-Centara:
http://www.emc.com/products/systems/centera.jsp

[13] S. Frolund, A. Merchant, Y. Saito, et al, “FAB: enterprise
storage systems on a shoestring”, HOTOS’03.

[14] S. Ghemawat, H. Gobioff, S.T. Leung, “The Google File Sys-
tem”, SOSP’03.

[15] G.A. Gibson, D.F. Nagle, K. Amiri, et al. “A Cost-Effective,
High-Bandwidth Storage Architecture”, ASPLOS’98.

[16] J. Gray, W. Chong, T. Barclay, et al. “TeraScale SneakerNet:
Using Inexpensive Disks for Backup, Archiving, and Data Ex-
change”, MSR Technical Report No. MSR-TR-2002-54.

[17] J. Gray, “Storage Bricks Have Arrived,” invited talk FAST‘02.
[18] D. Kostić, A. Rodriguez, J. Albrecht, et al, “Using Random

Subsets to Build Scalable Network Services”, USITS’03.
[19] J. Kubiatowicz, D. Bindel, Y. Chen, et al, “OceanStore: An

Architecture for Global-Scale Persistent Storage”, ASPLOS’00.
[20] Q. Lian, W. Chen, Z. Zhang, “On the Impact of Replica Place-

ment to the Reliability of Distributed Brick Storage Systems”,
submitted to ICDCS'05.

[21] E.K. Lee, C.A. Thekkath, “Petal: Distributed Virtual Disks”,
ASPLOS’96.

[22] S.D. Lin, Q. Lian, M. Chen et al, “A Practical Distributed
Mutual Exclusion Protocol in Dynamic Peer-to-Peer Systems”,
IPTPS’04.

[23] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou, Boxwood: Abstractions as the Foundation for Storage
Infrastructure, ODSI’04

[24] A. Muthitacharoen, R. Morris, T. M. Gil, et al, “Ivy: A
Read/Write Peer-to-peer File System”, OSDI’02.

[25] D. Patterson, A. Brown, P. Broadwell, et al, “Recovery Ori-
ented Computing (ROC): Motivation, Definition, Techniques,
and Case Studies”, UCB Technical Report No. UCB/CSD-02-
1125.

[26] S. Quinlan, S. Dorward, “Venti: a new approach to archival
storage”, FAST’02.

[27] S. Ratnasamy, P. Francis, M. Handley, et al, “A Scalable Con-
tent-Addressable Network“, SIGCOMM’01.

[28] S. Rhea, P. Eaton, D. Geels, et al, “Pond: the OceanStore
Prototype”. FAST '03

[29] A. Rowstron, P. Druschel, "Pastry: Scalable, Distributed Ob-
ject Location and Routing for Large-scale Peer-to-peer Sys-
tems", IFIP/ACM Middleware’01.

[30] A. Rowstron and P. Druschel, "Storage management and cach-
ing in PAST, a large-scale, persistent peer-to-peer storage util-
ity", SOSP’01.

[31] I. Stoica, R. Morris, D. Karger, et al, “Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications”, SIG-
COMM’01.

[32] N. Talagala, S. Asami, D. Patterson, et al, “Tertiary Disk:
Large Scale Distributed Storage”, UCB Technical Report No.
UCB//CSD-98-989.

[33] C.A. Thekkath, T. Mann, E.K. Lee, “Frangipani: A Scalable
Distributed File System”, SOSP’97.

[34] Z. Zhang, Q. Lian, Y. Chen, “XRing a Robust and High-
Performance P2P DHT”, Microsoft Research Technical Report
No.MSR-TR-2004-93.

[35] Z. Zhang, S.D. Lin, Q. Lian, C. Jin, “RepStore: A Self-
Managing and Self-Tuning Storage Backend with Smart
Bricks”, ICAC'04

[36] Z. Zhang, S.M. Shi, J. Zhu, “SOMO: Self-Organized Metadata
Overlay for Resource Management”, IPTPS’03.

[37] B.Y. Zhao, J. Kubiatowicz, A.D. Josep, “Tapestry: An Infra-
structure for Fault-tolerant Wide-area Location and Routing”,
UCB Technical Report No. UCB/CSD-01-1141.

